3.4.16 \(\int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx\) [316]

3.4.16.1 Optimal result
3.4.16.2 Mathematica [C] (verified)
3.4.16.3 Rubi [A] (verified)
3.4.16.4 Maple [A] (verified)
3.4.16.5 Fricas [C] (verification not implemented)
3.4.16.6 Sympy [F]
3.4.16.7 Maxima [F]
3.4.16.8 Giac [F]
3.4.16.9 Mupad [F(-1)]

3.4.16.1 Optimal result

Integrand size = 23, antiderivative size = 187 \[ \int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx=\frac {152 a^4 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {32 a^4 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{7 d}+\frac {2 a^4 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 a^4 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {122 a^4 \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {32 a^4 \sin (c+d x)}{7 d \sqrt {\sec (c+d x)}} \]

output
2/9*a^4*sin(d*x+c)/d/sec(d*x+c)^(7/2)+8/7*a^4*sin(d*x+c)/d/sec(d*x+c)^(5/2 
)+122/45*a^4*sin(d*x+c)/d/sec(d*x+c)^(3/2)+32/7*a^4*sin(d*x+c)/d/sec(d*x+c 
)^(1/2)+152/15*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti 
cE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+32/7*a^ 
4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/ 
2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.4.16.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.24 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.83 \[ \int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx=\frac {a^4 \left (-25536 i+\frac {51072 i \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}-11520 i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+12240 \sin (c+d x)+3556 \sin (2 (c+d x))+720 \sin (3 (c+d x))+70 \sin (4 (c+d x))\right )}{2520 d \sqrt {\sec (c+d x)}} \]

input
Integrate[(a + a*Cos[c + d*x])^4/Sqrt[Sec[c + d*x]],x]
 
output
(a^4*(-25536*I + ((51072*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c 
 + d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] - (11520*I)*Sqrt[1 + E^((2*I)*(c 
+ d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d* 
x] + 12240*Sin[c + d*x] + 3556*Sin[2*(c + d*x)] + 720*Sin[3*(c + d*x)] + 7 
0*Sin[4*(c + d*x)]))/(2520*d*Sqrt[Sec[c + d*x]])
 
3.4.16.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 3717, 3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^4}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^4}{\sec ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \int \left (\frac {4 a^4}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {6 a^4}{\sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a^4}{\sec ^{\frac {7}{2}}(c+d x)}+\frac {a^4}{\sec ^{\frac {9}{2}}(c+d x)}+\frac {a^4}{\sqrt {\sec (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {122 a^4 \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a^4 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a^4 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {32 a^4 \sin (c+d x)}{7 d \sqrt {\sec (c+d x)}}+\frac {32 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{7 d}+\frac {152 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}\)

input
Int[(a + a*Cos[c + d*x])^4/Sqrt[Sec[c + d*x]],x]
 
output
(152*a^4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/ 
(15*d) + (32*a^4*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + 
 d*x]])/(7*d) + (2*a^4*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2)) + (8*a^4*Sin 
[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (122*a^4*Sin[c + d*x])/(45*d*Sec[c + 
 d*x]^(3/2)) + (32*a^4*Sin[c + d*x])/(7*d*Sqrt[Sec[c + d*x]])
 

3.4.16.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 
3.4.16.4 Maple [A] (verified)

Time = 16.32 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.39

method result size
default \(-\frac {8 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{4} \left (280 \left (\cos ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+34 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+72 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-485 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+180 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-399 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+219 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(260\)
parts \(\text {Expression too large to display}\) \(937\)

input
int((a+cos(d*x+c)*a)^4/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-8/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4*(280*co 
s(1/2*d*x+1/2*c)^11-120*cos(1/2*d*x+1/2*c)^9+34*cos(1/2*d*x+1/2*c)^7+72*co 
s(1/2*d*x+1/2*c)^5-485*cos(1/2*d*x+1/2*c)^3+180*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
-399*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipt 
icE(cos(1/2*d*x+1/2*c),2^(1/2))+219*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/ 
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c 
)^2-1)^(1/2)/d
 
3.4.16.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 183, normalized size of antiderivative = 0.98 \[ \int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx=-\frac {2 \, {\left (360 i \, \sqrt {2} a^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 360 i \, \sqrt {2} a^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 798 i \, \sqrt {2} a^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 798 i \, \sqrt {2} a^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (35 \, a^{4} \cos \left (d x + c\right )^{4} + 180 \, a^{4} \cos \left (d x + c\right )^{3} + 427 \, a^{4} \cos \left (d x + c\right )^{2} + 720 \, a^{4} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{315 \, d} \]

input
integrate((a+a*cos(d*x+c))^4/sec(d*x+c)^(1/2),x, algorithm="fricas")
 
output
-2/315*(360*I*sqrt(2)*a^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c)) - 360*I*sqrt(2)*a^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I* 
sin(d*x + c)) - 798*I*sqrt(2)*a^4*weierstrassZeta(-4, 0, weierstrassPInver 
se(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 798*I*sqrt(2)*a^4*weierstrassZ 
eta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3 
5*a^4*cos(d*x + c)^4 + 180*a^4*cos(d*x + c)^3 + 427*a^4*cos(d*x + c)^2 + 7 
20*a^4*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 
3.4.16.6 Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx=a^{4} \left (\int \frac {4 \cos {\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {6 \cos ^{2}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {4 \cos ^{3}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {\cos ^{4}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {1}{\sqrt {\sec {\left (c + d x \right )}}}\, dx\right ) \]

input
integrate((a+a*cos(d*x+c))**4/sec(d*x+c)**(1/2),x)
 
output
a**4*(Integral(4*cos(c + d*x)/sqrt(sec(c + d*x)), x) + Integral(6*cos(c + 
d*x)**2/sqrt(sec(c + d*x)), x) + Integral(4*cos(c + d*x)**3/sqrt(sec(c + d 
*x)), x) + Integral(cos(c + d*x)**4/sqrt(sec(c + d*x)), x) + Integral(1/sq 
rt(sec(c + d*x)), x))
 
3.4.16.7 Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^4/sec(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((a*cos(d*x + c) + a)^4/sqrt(sec(d*x + c)), x)
 
3.4.16.8 Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^4/sec(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^4/sqrt(sec(d*x + c)), x)
 
3.4.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^4}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^4}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((a + a*cos(c + d*x))^4/(1/cos(c + d*x))^(1/2),x)
 
output
int((a + a*cos(c + d*x))^4/(1/cos(c + d*x))^(1/2), x)